如图所示,在三角形ABC,角A=角ACB,CD是角ACB的平分线,CE垂直AB于E.试证明角COB=3角DBC.最后是试证明角CDB=3角DCB
问题描述:
如图所示,在三角形ABC,角A=角ACB,CD是角ACB的平分线,CE垂直AB于E.试证明角COB=3角DBC.
最后是试证明角CDB=3角DCB
答
图呢?
答
这个题好像用不着“CE垂直AB于E”吧!
∵∠A=∠ACB,CD是∠ACB的平分线∴∠DCA=∠DCB=1/2∠A∵∠BDC是△ADC的外角∴∠BDC=∠A+∠DCA 即∠BDC=3∠DCA∴∠BDC=3∠DCB
该题不难,要认真想啊!