已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.
问题描述:
已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.
答
CE是AB边上的中线.理由:∵∠ACB=90°,∠ACD:∠BCD=1:2,∴∠ACD=30°,∠BCD=60°,∵CE平分∠BCD,∴∠DCE=∠BCE=30°,∵CD⊥AB,∠ACD=30°,∠BCD=60°,∴∠A=60°,∠B=30°,∴∠A=∠ACD+∠DCE=∠ACE,...
答案解析:先求出∠ACD=30°,∠BCD=60°,然后根据角平分线的定义求出∠DCE=∠BCE=30°,再根据直角三角形两锐角互余求出∠B,∠A,从而得到∠A=∠ACE,∠B=∠BCE,根据等角对等边的性质可得AE=EC,BE=EC,然后求出AE=BE,即可得解.
考试点:等腰三角形的判定与性质.
知识点:本题考查了等腰三角形的判定与性质,角平分线的定义,直角三角形两锐角互余的性质,等角对等边的性质,综合题,但难度不大,准确识图是解题的关键.