f(x)=(x-3)/(x+3)求导
问题描述:
f(x)=(x-3)/(x+3)求导
答
对于分式求导如(a/b)'=(a'b-b'a)/b² 所以f(x)'=(x+3-x+3)/(x+3)²=6/(x+3)²
答
(1)y'=(x+1)'(x+2)(x+3)+(x+1)(x+2)'(x+3)+(x+1)(x+2)(x+3)'=(x+2)(x+3)+(x+1)(x+3)+(x+1)(x+2)=3x²+12x+11(2)y'=(x²)'+(1/x)'+(-3/x^3)'=4x-1/x²+9/(x^4)(3)y'=(e^x)'cosx+(e^x)(cosx)'+(sinx)'=(e^x)cosx-(e^x)sinx+cosx=(e^x)(cosx-sinx)+cosx
答
f =(x-3)/(x+3)
f '=[(x-3)' (x+3)-(x-3)(x+3)']/(x+3)^2
=[(x+3)-(x-3)]/(x+3)^2
=6/(x+3)^2