设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.

问题描述:

设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.

由已知f′(x)=[(ax+b)sinx+(cx+d)cosx]′
=[(ax+b)sinx]′+[(cx+d)cosx]′
=(ax+b)′sinx+(ax+b)(sinx)′+(cx+d)′cosx+(cx+d)•(cosx)′
=asinx+(ax+b)cosx+ccosx-(cx+d)sinx
=(a-cx-d)sinx+(ax+b+c)cosx.
又∵f′(x)=xcosx,
∴必须有

a−d−cx=0
ax+b+c=x
,即
a−d=0
−c=0
a=1
b+c=0

解得a=d=1,b=c=0.
答案解析:根据求导的乘法法则,先对f(x)进行求导,再将导函数和所给函数进行比较,可得.
考试点:导数的乘法与除法法则;判断两个函数是否为同一函数.
知识点:导数是近年来高考中必考内容,解答题中一般可涉及到.考查的重点在于导数的几何意义和导数对函数性质的研究,当然导数的计算更是做题的前提.