S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)= ___ .

问题描述:

S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)= ___ .

S=1+2x+3x2+4x3+…+nxn-1
xS=x+2x2+3x3+…+nxn
两式作差得:(1-x)S=1+x+x2+…+xn-1-nxn
∵x≠1且x≠0,
∴(1-x)S=

1-xn
1-x
-nxn
则S=
1-xn
(1-x)2
-
nxn
1-x

故答案为:
1-xn
(1-x)2
-
nxn
1-x

答案解析:直接利用错位相减法求数列的和.
考试点:数列的求和.

知识点:本题考查了错位相减法求数列的和,关键是注意末项的符号,是中档题.