若f(x)在(-∞,+∞)内有一阶连续导数且f(0)=0,则当A=?时,g(x)=f(x)/x,x≠0;A,x=0在(-∞,+∞)内连续
问题描述:
若f(x)在(-∞,+∞)内有一阶连续导数且f(0)=0,则当A=?时,g(x)=f(x)/x,x≠0;A,x=0在(-∞,+∞)内连续
答
不懂你的题目
答
若f(x)在(-∞,+∞)内有一阶连续导数且f(0)=0,有:
f'(0)=[f(0+dx)-f(0)]/dx,dx趋近于0
=f(dx)/dx
g(x)=f(x)/x在x=0处连续,则x趋近0的时候应该等于A
x趋近0,f(x)/x=f'(0)
所以A=f'(0)