高数证明题-涉及可导性与连续性已知 F 在0处可导,且 F (0) =0.证明:存在一个在0处连续的函数G,使得对于所有x都有 F(x) = x G(x).
问题描述:
高数证明题-涉及可导性与连续性
已知 F 在0处可导,且 F (0) =0.证明:存在一个在0处连续的函数G,使得对于所有x都有 F(x) = x G(x).
答
F(x)在x=0处可导,那么lim(x→0)(F(x)-F(0))/(x-0)=lim(x→0)F(x)/x=F'(0)
那么定义G(x)= F(x)/x x不等于0
F‘(0) x=0
那么G(x)有定义
且lim(x→0)G(x)=lim(x→0)F(x)/x=F'(0)=G(0)
所以G(x)在x=0处连续,满足题意