设函数f(x)具有连续的导数且满足方程,∫(0-x)(x-t+1)f'(t)dt=x^2+e^x-f(x),求f(x)
问题描述:
设函数f(x)具有连续的导数且满足方程,∫(0-x)(x-t+1)f'(t)dt=x^2+e^x-f(x),求f(x)
答
令x=0:0=1-f(0), f(0)=1左边=x∫(0→x)f'(t)dt-∫(0→x)(t-1)f'(t)dt=x(f(x)-f(0))-∫(0→x)(t-1)f'(t)dt=xf(x)-x-∫(0→x)(t-1)f'(t)dt两边对x求导:f(x)+xf'(x)-1-(x-1)f'(x)=2x+e^x-f'(x)f(x)+xf'(x)-1-xf'(x)+f...