求函数y=(5x-2)/(4x+2)的值域

问题描述:

求函数y=(5x-2)/(4x+2)的值域

原函数=(5/4)(4x-8/5)/(4x+2)=(5/4)(4x+2-18/5)/(4x+2)=5/4-9/(8x+4)
可见后边的分式不为0,函数值不为5/4
值域是{y|y≠5/4}

答:
y=(5x-2)/(4x+2)
=[(5/4)*(4x+2)-9/2]/(4x+2)
=5/4-9/(8x+4)
5/4-y=9/(8x+4)
所以:5/4-y≠0
所以:y≠5/4
所以:值域为(-∞,5/4)∪(5/4,+∞)

函数y=(5x-2)/(4x+2)的值域
= (5x+2x5/4 - 2x5/4 -2 ) / (4x+2)
= (5x+2x5/4 - 5/2 -2 ) / (4x+2)
= (5x+2x5/4 - 9/2 ) / (4x+2)
= 5/4 - 9/2 / (4x+2)
的值域 为 y≠ 4分之 5

y(4x+2)=5x-2
4yx+2y=5x-2
2y+2=(5-4y)x
x=(2y+2)/(5-4y)
5-4y不=0
即有Y不=5/4
即值域是(-oo,5/4)U(5/4,+oo)