若x除以10=y除以8=z除以9,则x+y+z除以y+z
问题描述:
若x除以10=y除以8=z除以9,则x+y+z除以y+z
答
27/17
答
x除以10=y除以8=z除以9 = t
x = 10t, y = 8t, z = 9t
(x+y+z) / (y+z) = 27t / 17t = 27 / 17
答
x/10=y/8=z/9=(x+y+z)/(8+9+10)=(y+z)/(8+9)
所以:(x+y+z)/(8+9+10)=(y+z)/(8+9)
所以:(x+y+z)/(y+z)=(8+9+10)/(8+9)=27/17