求该伯努利方程的解x^2*y'+xy=y^2
问题描述:
求该伯努利方程的解
x^2*y'+xy=y^2
答
两边同除以x^2
y'+y/x=y^2/x^2
令u=y/x,则y=ux,y'=u'x+u
u'x+u+u=u^2
u'x=u^2-2u
两边积分
ux-u=1/3u^3-u^2+C
ux=1/3u^3-u^2+u+C
y=1/3(y/x)^3-(y/x)^2+(y/x)+C