用数学归纳法证明f(n)=1+1/2+1/4+...+1/2^n(n属于N)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了多少项答案是2^K 为什么。

问题描述:

用数学归纳法证明f(n)=1+1/2+1/4+...+1/2^n(n属于N)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了多少项
答案是2^K 为什么。

f(k+1)=1+1/2+1/4+...+1/2^k+1/(2^k+1)+...+1/2^(k+1)
f(K)=1+1/2+1/4+...+1/2^k
比较一下可知,f(k+1)比f(k)多的项为从
1/(2^k+1),1/(2^k+2),到1/2^(k+1),共2^(k+1)-(2^k+1)+1=2*2^K -2^k=2^k