1.设Xn=cos (nπ/2)/n 问lim(x→∞)Xn=?求出N,使当n>N时,Xn与其极限之差的绝对值小于正数δ,当δ=0.001时,求出数N.2.证明lim(x→∞)根号下(1+a²/n²)=13.若lim(x→∞)Un=a,证明lim(x→∞ ) ▏Un▕=▏a▕,并举例说明,数列 ▏Un▕ 收敛时,数列U未必收敛.

问题描述:

1.设Xn=cos (nπ/2)/n 问lim(x→∞)Xn=?求出N,使当n>N时,Xn与其极限之差的绝对值小于正数δ,当δ=0.001时,求出数N.
2.证明lim(x→∞)根号下(1+a²/n²)=1
3.若lim(x→∞)Un=a,证明lim(x→∞ ) ▏Un▕=▏a▕,并举例说明,数列 ▏Un▕ 收敛时,数列U未必收敛.

1.lim(n→∞)cos (nπ/2)/n=1.lim(.n→∞)Xn=0,解N时,N必须满足1/N