设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.证明l1与l2的交点在椭圆2x2+y2=1上.
问题描述:
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.证明l1与l2的交点在椭圆2x2+y2=1上.
答
证明:由方程组
y=k1x+1 y=k2x-1
解得交点P的坐标(x,y)为
x=
2
k2-k1
y=
.
k2+k1
k2-k1
而2x2+y2=2(
)2+(2
k2-k1
)2=
k2+k1
k2-k1
=8+
+
k
2
2
+2k1k2
k
2
1
+
k
2
2
-2k1k2
k
2
1
=1.
+
k
2
1
+4
k
2
2
+
k
2
1
+4
k
2
2
此即表明交点P(x,y)在椭圆2x2+y2=1上.
答案解析:将两直线方程联立,求出交点坐标,利用已知条件,将交点坐标代入椭圆方程左侧,若满足方程,则得到证明点在线上.
考试点:椭圆的标准方程;两条直线的交点坐标.
知识点:本题考查两条直线的交点坐标、考查通过解两条直线方程构成的方程组求出两条直线的交点的坐标.