一道高中数学不等式证明题.设a,b,c>0,求证1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c)

问题描述:

一道高中数学不等式证明题.
设a,b,c>0,求证1/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c)

证明:由柯西不等式可知[(a+b)+(b+c)+(c+a)]×[1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)²=9.即2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]≥9.====>1/(a+b)+1/(b+c)+1/(c+a)≥9/[2(a+b+c)]

由不等式公式知:(a+b+c)(1/a+1/b+1/c)>=9又 2(a+b+c)(1/(a+b)+1/(b+c)+1/(c+a))=[(a+b)+(b+c)+(c+a)][(a+b)+1/(b+c)+1/(c+a)]>=9a,b,c>01/(a+b)+1/(b+c)+1/(c+a)>=9/2(a+b+c)