若实数abc满足a^2+(5+b)^2+根号(c+1)=3(2a-3),求-(2b-c)/a的立方根
问题描述:
若实数abc满足a^2+(5+b)^2+根号(c+1)=3(2a-3),求-(2b-c)/a的立方根
答
a^2+(5+b)^2+√(c+1)=3(2a-3)a^2+(5+b)^2+√(c+1)=6a-9a^2-6a+9+(5+b)^2+√(c+1)=0(a-3)^2+(5+b)^2+√(c+1)=0∴a-3=0a=35+b=0b=-5c+1=0c=-1∴-(2b-c)/a=-[2*(-5)+1]/3=9/3=3∴-(2b-c)/a的立方根为³√3...