已知a,b∈R*,且2a+b=1,则S=2*√ab-4a^2-b^2的最大值是多少?∵1=2a+b≥2*√(2ab)∴,√(ab)≤√2/4 ∵s=2√(ab)-(4a^2+b^2)≤2√ab-4ab(基本不等式)∴令√ab=t,则0
问题描述:
已知a,b∈R*,且2a+b=1,则S=2*√ab-4a^2-b^2的最大值是多少?
∵1=2a+b≥2*√(2ab)
∴,√(ab)≤√2/4 ∵s=2√(ab)-(4a^2+b^2)≤2√ab-4ab(基本不等式)
∴令√ab=t,则0
答