数列{an}满足a1=1,an+1*√[(1/an^2)+4]=1,记Sn=a1^2+a2^2+…+an^2,若S2n+1-Sn≤m/30对任意的n∈N+恒成立求正整数m的最小值?帮个忙谢谢.
问题描述:
数列{an}满足a1=1,an+1*√[(1/an^2)+4]=1,记Sn=a1^2+a2^2+…+an^2,若S2n+1-Sn≤m/30对任意的n∈N+恒成立
求正整数m的最小值?帮个忙谢谢.
答