设an是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.an=4n-2令bn=1/2 (an+1 /an +an /an+1 )(n∈N),求证b1+b2+…+bn

问题描述:

设an是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
an=4n-2令bn=1/2 (an+1 /an +an /an+1 )(n∈N),求证b1+b2+…+bn

(an +2)/2=√(2Sn)
8Sn=(an+2)²
n=1时,8S1=8a1=(a1+2)²
(a1-2)²=0
a1=2
n≥2时,8Sn=(an +2)² 8S(n-1)=[a(n-1)+2]²
8Sn-8S(n-1)=8an=(an+2)²-[a(n-1)+2]²
(an -2)²=[a(n-1)+2]²
an -2=a(n-1)+2或an-2=-a(n-1)-2
an-a(n-1)=4或an=-a(n-1)(数列各项均为正,舍去)
an-a(n-1)=4,为定值。
数列{an}是以2为首项,4为公差的等差数列。
an=2+4(n-1)=4n-2

(an +2)/2=√(2Sn)8Sn=(an+2)²n=1时,8S1=8a1=(a1+2)²(a1-2)²=0a1=2n≥2时,8Sn=(an +2)² 8S(n-1)=[a(n-1)+2]²8Sn-8S(n-1)=8an=(an+2)²-[a(n-1)+2]²(an -2)²=[a(n-1)+2]²...