已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求数列的最大项已知数列{an}满足:a1+a2+a3+…+an=n-an求证{an-1}为等比数列令bn=(2-n)(an-1)求数列的最大项
问题描述:
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求数列的最大项
已知数列{an}满足:a1+a2+a3+…+an=n-an
求证{an-1}为等比数列
令bn=(2-n)(an-1)求数列的最大项
答
令Sn为an前n项和,Sn=n-an,S(n-1)=n-1-a(n-1),两式相减,an=1-an+a(n-1),2(an-1)=a(n-1)-1,所以an-1是公比为1/2的等比数列,a1-1=-1/2,所以an-1=(-1/2)*(1/2)^(n-1)=-(1/2)^n,bn=(2-n)*(-(1/2)^n)=(n-2)*(1/2)^n,因为...