三角形的三边长为连续的自然数,且最大角为最小角的二倍,求三边长.
问题描述:
三角形的三边长为连续的自然数,且最大角为最小角的二倍,求三边长.
答
根据题目,首先设三边分别为x-1,x,x+1
两个角是a和2a
则2a对x+1,a对x-1
sin2a=2sinacosa
由正弦定理
(x-1)/sina=(x+1)/sin2a=(x+1)/2sinacosa
所以x-1=(x+1)/2cosa
cosa=(x+1)/2(x-1)
由余弦定理
cosa=[(x+1)^2+x^2-(x-1)^2]/2x(x+1)
[(x+1)^2+x^2-(x-1)^2]/2x(x+1)=(x+1)/2(x-1)
2(x-1)(x^2+4x)=2x(x+1)^2
2x(x-1)(x+4)=2x(x+1)^2
x^2+3x-4=x^2+2x+1
x=5
所以三边是4,5,6