如图,已知在矩形ABCD中,AB:BC=1:2,点E在边AD上,且3AE=ED.求证:△ABC∽△EAB.

问题描述:

如图,已知在矩形ABCD中,AB:BC=1:2,点E在边AD上,且3AE=ED.
求证:△ABC∽△EAB.

∵ABCD为矩形,
∴∠EAB=∠ABC=90°,BC=AD.
∵AB:BC=1:2,3AE=ED,
∴AE:AB=1:2.
∴△ABC∽△EAB.
答案解析:根据已知及相似三角形的判定方法即可证得两三角形相似.
考试点:相似三角形的判定;矩形的性质.
知识点:本题主要考查了相似三角形的判定.