三角恒等交换的题目已知x+y=√2sin(a+n/4),x-y=√2sin(a-n/4),求证x^2+y^2=1

问题描述:

三角恒等交换的题目
已知x+y=√2sin(a+n/4),x-y=√2sin(a-n/4),求证x^2+y^2=1

x+y=√2sin(a+n/4)
(x+y)^2=2sin(a+n/4)
x^2+2xy+y^2=2sin(a+n/4) (1)
x-y=√2sin(a-n/4)
(x-y)^2=2sin(a-n/4)
x^2-2xy+y^2=2sin(a-n/4) (2)
(1)+(2),并化简得,x^2+y^2=2sina*cos(n/4)
题的条件全么?