当xy取何值时,-x的平方-2y的平方-2x+8y-5有最大值是多少?速度
问题描述:
当xy取何值时,-x的平方-2y的平方-2x+8y-5有最大值是多少?
速度
答
-x^2-2y^2-2x+8y-5=-(x+1)^2-2(y-2)^2+4
因为 (x+1)^2、(y-2)^2都大于或等于0,所以当
(x+1)^2=0且(y-2)^2=0时-x^2-2y^2-2x+8y-5可以取得最大值4.
即当x=-1,y=2时,-x^2-2y^2-2x+8y-5取得最大值4.
以后遇到没有定义域的函数求他的最值时,往往直接把他们凑成平方数,这样就可以直接看出他的结果了。希望对你有所帮助。
答
设S = -x²-2y²-2x+8y-5 = -(x+1)²-2(y-2)²+4
由于
-(x+1)²-2(y-2)²≤0
于是
S ≤ 4
等号成立当且仅当 x+1=0 且 y-2=0
即 当 xy = -1 * 2 = -2 时,S取得最大值4