已知实数abc成等差数列,a+1,b+1,c+1成等比数列,求a,b,c

问题描述:

已知实数abc成等差数列,a+1,b+1,c+1成等比数列,求a,b,c

2b=a+c
(b+1)^2=(a+1)(c+1)
联立:
a=b=c

①a+c=2b
②(a+1)(c+1)=(b+1)^2
②式等价于:ac+a+c+1=b^2+2b+1
①式代入得b^2=ac,即ac=((a+c)/2)^2
化简可得((a-c)/2)^2=0,得:a=c=b
所以:a=b=c≠-1(因为a+1,b+1,c+1要成等比数列,a+1≠0)