求f(x)= x/tanx 的导数,然后带入π/4到导数中的x.1-(π/2)

问题描述:

求f(x)= x/tanx 的导数,然后带入π/4到导数中的x.
1-(π/2)

f'(x)=[(x)'tanx-x(tanx)']/(tanx)^2
=(tanx-x·sec^2x)/(tanx)^2
=(sinx·cosx-x)·(cscx)^2
f'(π/4)=[sin(π/4)·cos(π/4)-π/4]·[csc(π/4)]^2
=(1/2-π/4)·2
=1-(π/2)

f'(x)=[x'*tanx-x*(tanx)']/(tanx)^2=[tanx-x*1/(cosx)^2]/(tanx)^2=[sinxcosx-x]/(sinx)^2f'(π/4)=[tanπ/4-π/4*1/(cosπ/4)^2]/(tanπ/4)^2=[1-π/4*1/(1/2)]/1=1-π/2