已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)1时,f(x)

问题描述:

已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)1时,f(x)

1)证明f(x)在定义域上是减函数任设x1>x2>0,则x1/x2>1,f(x1/x2)2f(1/3)=f(根号3/3*根号3/3)=2f(根号3/3)=2所以有:f(x)-f(1/(x-2))>=-f(1/3)f(x)+f(1/3)>=f(1/(x-2))f(x/3)>=f(1/(x-2))减函数得:x/32故:x(x-2)...