∫ cos²xsin²x dx求积分步骤= ∫ [(1/2)sin2x]² dx= (1/4)∫ sin²2x dx= (1/8)∫ [1 - cos4x] dx= x/8 - (1/32)sin4x + C我自己的做法:=(1/8)∫sin²2xd2x=(1/24)sin³2x+C我自己的解法对么?

问题描述:

∫ cos²xsin²x dx求积分步骤
= ∫ [(1/2)sin2x]² dx
= (1/4)∫ sin²2x dx
= (1/8)∫ [1 - cos4x] dx
= x/8 - (1/32)sin4x + C
我自己的做法:
=(1/8)∫sin²2xd2x
=(1/24)sin³2x+C
我自己的解法对么?

答:
你的解法当然不对了
你自己把结果求导一下就知道是错误的
你的结果求导是:
2*(1/8)sin²2xcos2x=(1/4)cos2xsin²2x,不是积分函数