已知函数y=2sinθcosθ+sinθ-cosθ(0≤θ≤π),求y的最大值与最小值
问题描述:
已知函数y=2sinθcosθ+sinθ-cosθ(0≤θ≤π),求y的最大值与最小值
答
设sinθ-cosθ=t∈[-√2,√2],
则2sinθcosθ=1-t².
∴y=2sinθcosθ+sinθ-cosθ
=(1-t²)+t
=-(t-1/2)²+5/4.
∴t=1/2时,所求最大值为:5/4;
∴t=-√2时,所求最小值为:-1-√2.