求微分方程dy/dx=x²+y²的通解.
问题描述:
求微分方程dy/dx=x²+y²的通解.
答
(-BesselJ[-(1/4), x^2/2] C[1] +
x^2 (-2 BesselJ[-(3/4), x^2/2] - BesselJ[-(5/4), x^2/2] C[1] +
BesselJ[3/4, x^2/2] C[1]))/(2 x (BesselJ[1/4, x^2/2] +
BesselJ[-(1/4), x^2/2] C[1]))
MATHEMATICA
答
dy/(1+y²)=dx/(1+x²)
arctany=arctanx+C
y=tan(arctanx+C)