已知sin(x+ π 4)=35,sin(x− π 4)=45,则tanx=______.

问题描述:

已知sin(x+

 π 
4
)=
3
5
sin(x−
 π 
4
)=
4
5
,则tanx=______.

sin(x+

 π 
4
)=
3
5
sin(x−
 π 
4
)=
4
5

2
2
(sin⁡x+cos⁡x)=
3
5
2
2
(sin⁡x−cos⁡x)=
4
5

两式相比得
sin⁡x+cos⁡x
sin⁡x−cos⁡x
3
4

即4sinx+4cosx=3sinx-3cosx,
∴sinx=-7cosx,
∴tanx=-7,
故答案为:-7
答案解析:利用两角和和差的正弦公式,展开进行整理即可得到结论.
考试点:两角和与差的正切函数;两角和与差的正弦函数.
知识点:本题主要考查两角和差的正弦公式的应用,要求熟练掌握相应的三角公式.