已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,以椭圆的长轴为实轴,短轴为虚轴的双曲线的焦距为2√34(1)求椭圆及双曲线的方程(2)设椭圆的左右顶点分别为A、B,在第二象限内取双曲线上一点P,连接BP交椭圆于点M,连接PA并延长交椭圆于点N,若BM(向量)=MP(向量),求四边形ANBM的面积.
问题描述:
已知离心率为4/5的椭圆的中心在原点,焦点在x轴上,以椭圆的长轴为实轴,短轴为虚轴的双曲线的焦距为2√34
(1)求椭圆及双曲线的方程
(2)设椭圆的左右顶点分别为A、B,在第二象限内取双曲线上一点P,连接BP交椭圆于点M,连接PA并延长交椭圆于点N,若BM(向量)=MP(向量),求四边形ANBM的面积.
答
最后一问不太一样 但是求出点坐标 就可以算面积了