如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )为什么延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',连接A'M,A''N,此时△AMN周长最小?
问题描述:
如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )为什么延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',连接A'M,A''N,此时△AMN周长最小?
答
你可以随便找两个点M,N,连接A'M,A''N,得到的四边形A'MNA''中:A'M+A''N+MN大于A'A
答
知道“马饮水”问题吗。
答
过程:∠AMN+∠ANM=120° 延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',那么A'A''与BC,ED的交点即为所求的M和N,∠AMN+∠ANM=2∠A'+2∠A''=2(180-∠BAE)=120°但愿对你有帮助!不懂请追问!原来楼主要解释这一句哈:△AA...