把曲线C:y=sin(7π/8-x)cos(x+π/8)向右平移a(a〉0)个单位,得到的曲线C'关于直线x=π/4对称.(1)求a的最小值.(2)就a的最小值证明:当x∈(-8π/7,-9π/8)时,曲线C'上的任意两点的直线斜率恒大于零.
问题描述:
把曲线C:y=sin(7π/8-x)cos(x+π/8)向右平移a(a〉0)个单位,得到的曲线C'关于直线x=π/4对称.
(1)求a的最小值.(2)就a的最小值证明:当x∈(-8π/7,-9π/8)时,曲线C'上的任意两点的直线斜率恒大于零.
答
y=sin(7π/8-x)cos(x+π/8)=sin(π-(x+π/8))cos(x+π/8)=sin(x+π/8)cos(x+π/8)=1/2*2sin(x+π/8)cos(x+π/8)=1/2*sin(2x+π/4)向右平移a(a>0)个单位,y=1/2*sin(2(x-a)+π/4)=1/2*sin(2x-2a+π/4)直线x=π/4对称∴...