求证:cosx+cos2x+…+cosnx=cosn+12x•sinn2xsinx2.
问题描述:
求证:cosx+cos2x+…+cosnx=
. cos
x•sinn+1 2
xn 2 sin
x 2
答
知识点:本题考查了积化和差、和差化积,属于基础题.
证明:∵2sinx2cosnx=sin(x2+nx)+sin(x2−nx).∴2sinx2(cosx+cos2x+…+cosnx)=(sin3x2−sinx2)+(sin5x2−3x2)+…+(sin1+2n2x−sin1−2n2x)=sin1+2n2x−sinx2=2cosn+12xsinn2x.∴cos+cos2x+…+cosnx=cosn+12x•...
答案解析:利用2sin
cosnx=sin(x 2
+nx)+sin(x 2
−nx).及和差化积即可得出.x 2
考试点:三角函数恒等式的证明.
知识点:本题考查了积化和差、和差化积,属于基础题.