设x∈[0,∏/3],求函数y=cos(2x-∏/3)+2sin(x-∏/6)的最值
问题描述:
设x∈[0,∏/3],求函数y=cos(2x-∏/3)+2sin(x-∏/6)的最值
答
y=cos(2x-∏/3)+2sin(x-∏/6)
=1-2[sin(x-π/6)]^2 +2sin(x-∏/6)
=-2[sin(x-π/6)-1/2)^2+5/4
0≤x≤π/3
-π/6≤x-π/6≤π/6
-1/2≤sin(x-π/6)≤1/2
5/4≤y≤13/4
答
先把所求式子变为关于x的正余弦函数,然后求解即可
答
令sin(x-π/6)=t则∵ x∈[0,π/3]∴ x-π/6∈[-π/6,π/6]∴ sin(x-π/6)∈[-1/2,1/2]且 cos(2x-π/3)=cos[2(x-π/6)]=1-2sin²(x-π/6)=1-2t²y=cos(2x-∏/3)+2sin(x-∏/6)=1-2t²+2t=-2(t-1/2)...