∫cos(x/2)^2dx 怎么算?

问题描述:

∫cos(x/2)^2dx 怎么算?

∫cos(x/2)^2dx=∫(1+cosx)/2dx
=x/2+sinx+C

上式可以化简=1/2∫(cos2x+1)dx
=1/2[1/2(sin2x)+x]
=1/4sin2x+1/2x

∫cos(x/2)^2dx=∫(1+cosx)/2dx
=x/2+(1/2)sinx+C