已知cos(x+π/6)=5/13,x∈(0,π/2),则cosx=

问题描述:

已知cos(x+π/6)=5/13,x∈(0,π/2),则cosx=

x∈(0,π/2)x+π/6∈(π/6,2π/3)所以sin(x+π/6)>0sin²(x+π/6)+cos²(x+π/6)=1所以sin(x+π/6)=12/13cosa=cos[(x+π/6)-π/6]=cos(x+π/6)cosπ/6+sin(x+π/6)sinπ/6=(5√3+12)/26