已知tan(a+b)=3,tan(a-b)=5,求tan(2a)的值
问题描述:
已知tan(a+b)=3,tan(a-b)=5,求tan(2a)的值
答
a>90
答
8
答
tan(2a)=tan[(a+b)+(a-b)]=[tan(a+b)+tan(a-b)]/[1-tan(a+b)*tan(a+b)]套公式的
=-4/7
答
(tana+tanb)/(1-tanatanb)=3
tana+tanb=3-3tanatanb (1)
(tana-tanb)/(1+tanatanb)=5
tana-tanb=5+5tanatanb (2)
(1)+(2)
2tana=8+2tanatanb
tana=4+tanatanb (3)
[(1)-(2)]/2
tanb=-1-4tanatanb (4)
(3)*(4)并令m=tanatanb
m=(4+m)(-1-m)
m^2+6m+4=0
m=-3±√5
tana=4+m=1±√5
tan2a=2tana/[1-(tana)^2]
tana=1+√5,tan2a=-2/5
tana=1-√5,tan2a=-2/5
所以tana=-2/5