已知cos(11π-3)=P,则tan(-3)=__?“麻烦详细点” 感激不尽!

问题描述:

已知cos(11π-3)=P,则tan(-3)=__?“麻烦详细点” 感激不尽!

cos(-3)=-P
sin(-3)=-根(1-P^2)
tan(-3)=根(1-P^2)/P

cos(11π-3)=cos(π-3)=-cos(-3)=-cos3=p
cos3=-p,sin3=√1-cos3^2=√1-p2
tan-3=-tan3=-(√1-p2)/(-p)
tan3=(√1-p2)/p

cos(11pai-3)=cos(pai-3)=-cos3=-cos(-3)
cos(11pai-3)=-cos3=-sin(3+pai/2)=-[1-(sin3)^2]^0.5
所以cos(-3)=-p
sin(-3)=-(1-p^2)^0.5
所以tan(-3)=p/(1-p^2)^0.5

11π-3就在第二象,则cos则cos(11π-3)=-cos3=P
cos3=-p
因为π/20
sin3=√(1-cos^23)=√(1-p^2)
sin(-3)=-sin3=-√(1-p^2)
cos3=cos(-3)
tan(-3)=√(1-p^2)/p

cos(11π-3)=P可得cos(-3)=-P
由于-3在第三象限,所以P小于0
正切值大于0,由单位圆三角形可得tan(-3)=-√(1-P2)/P.(根号下1减P的平方再除以负P)

cos(11π-3)=P
cos(11π-3)
=cos(11π)cos3+sin(11π)sin3
=cos(π)cos3+sin(π)sin3
=-cos3
cos3=-P
sin3=√(1-P²)
tan3=sin3/cos3=-P/√(1-P²)
tan(-3)=-tan3=P/√(1-P²)=P√(1-P²)/(1-P²)

cos(11π-3)=cos(π-3)=-cos(-3)=P
∴cos(-3)=-P
sin(-3)=√(1-P²)
tan(-3)=sin(-3)/ cos(-3)= - [√(1-P²)] / P

cos(11π-3)=cos(π-3)=-cos3=p
所以cos3=-p
因为π/2<3<π
所以cos3<0,sin3>0
所以P>0,sin3=√(1-cos^23)=√(1-P^2)
所以tan(-3)=-tan3=-sin3/cos3=[√(1-P^2)]/P

因为cos(11π-3)=cos(10π+π-3)=cos(π-3)=-cos(3)
所以cos(-3)=cos(3)=-P
sin(-3)=-sin(3)=-根号(1-P^2)
所以tan(-3)=sin(-3)/cos(-3)=根号(1-P^2)/P