1/√n+√n+1=√n+1-√n.是怎么推导出来的?1/(√n+√n+1)= √n+1-√n.

问题描述:

1/√n+√n+1=√n+1-√n.是怎么推导出来的?
1/(√n+√n+1)= √n+1-√n.

√n+1-√n=(√n+1-√n)(√n+1+√n)/(√n+1+√n)=1/(√n+√n+1)

1/(√n+√n+1)=(√n+1-√n)/[(√n+√n+1)(√n+1-√n)]=(√n+1-√n)/[(n+1-n)]=(√n+1-√n)