设A为四阶方阵,且秩(A)=2,则齐次线性方程组A*x=0(A*是A的伴随矩阵)的基础解系所包含的解向量的个数为___.
问题描述:
设A为四阶方阵,且秩(A)=2,则齐次线性方程组A*x=0(A*是A的伴随矩阵)的基础解系所包含的解向量的个数为___.
答
对n阶矩阵A,①若r(A)=n,则.A.≠0∵.AA*.=..A.E.,.A..A*.=.A.n,∴.A*.=.A.n-1≠0,即r(A*)=n②若r(A)=n-1,则A至少有一个n-1阶的子矩阵的秩为n-1,也就是A*中有至少一个元素不为0,∴1≤r(A*)<n③若r(A...
答案解析:考查矩阵与其伴随矩阵的秩之间存在的关系
考试点:基础解系、通解及解空间的概念
知识点:n阶矩阵A与它的伴随矩阵的行列式和秩都存在很多联系