已知二次函数f(x)=ax^2+bx(a,b属于R,a≠0),满足条件f(-x+5)=f(x-3),且方程f(x)=x有等根.
问题描述:
已知二次函数f(x)=ax^2+bx(a,b属于R,a≠0),满足条件f(-x+5)=f(x-3),且方程f(x)=x有等根.
1)求f(x)的解析式;
2)是否存在实数m,n(m
答
1)
由f(-x+5)=f(x-3)可知对称轴为 x=1
所以b/(-2a)=1 b=-2a;
因为ax^2+bx=x 即 ax^2+(b-1)x=0有重根
显然x1=x2=0 所以 b=1 a=-1/2
所以f(x)=-1/2x^2+x;
2)分别讨论:
若1=