求证 极限 lim [(b1+b2+.bn)/(a1+a2+...an)] = L
问题描述:
求证 极限 lim [(b1+b2+.bn)/(a1+a2+...an)] = L
条件(I) 通项an>0 且a1+a2+...an = 正无穷
条件(II) lim (bn/an) = L
注意 bn或者an中的n均为下标 且n从1开始
提示 :Stolz定理 或者 考虑Toeplitz 数表?
回答者:benkyoshi - 大魔法师 九级 12-26 04:58
虽然您的解答十分精彩,但是不好意思,有比您更早时间的回答,另外,采用了我的提示.十分抱歉,我只能将分数送给第一楼的朋友,
答
设
An = a1+a2+……an
Bn = b1+b2+……+bn
由于an>0
An单调上升,且
limAn = +∞;
lim(bn/an) = lim((Bn - Bn-1)/(An - An-1) = L
由Stolz定理:limAn/Bn = L
即所要求的结果