甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?

问题描述:

甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).
(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);
(2)问甲、乙两队哪队先完成任务?

(1)甲队完成任务需要的时间为2÷(12x+12y)=4x+y,乙队完成任务需要的时间为1x+1y=x+yxy,所以甲、乙两队完成任务需要的时间分别为4x+y天,x+yxy天.(2)t1−t2=4x+y−x+yxy=4xy−(x+y)2xy(x+y)=−(x−y)2xy(x+y...
答案解析:(1)甲队完成任务需要的时间=工作总量2÷工作效率;乙队完成任务需要的时间=前一千米所用的时间+后一千米所用的时间.
(2)让甲队所用时间-减去乙队所用时间看是正数还是负数即可.
考试点:一元一次不等式的应用;列代数式.


知识点:解决问题的关键是读懂题意,找到所求的量的等量关系.比较两个代数式,通常让这两个代数式相减看是正数还是负数.