设f''(x)连续,且f''(x)>0,f(0)=f'(0)=0,试求极限lim(x->0+)∫(上u(x) 下0)f(t)dt/∫(上x下0)f(t)dt其中u(x)是曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距

问题描述:

设f''(x)连续,且f''(x)>0,f(0)=f'(0)=0,试求极限lim(x->0+)∫(上u(x) 下0)f(t)dt/∫(上x下0)f(t)dt
其中u(x)是曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距