∫(lnx)^2 dx 怎么算如题

问题描述:

∫(lnx)^2 dx 怎么算
如题

分部积分
∫(lnx)^2 dx
=x(lnx)^2-∫xd(lnx)^2
=x(lnx)^2-∫x*2lnx*1/xdx
=x(lnx)^2-2∫lnxdx
=x(lnx)^2-2[xlnx-∫xdlnx]
=x(lnx)^2-2xlnx+2∫x*1/xdx
=x(lnx)^2-2xlnx+2x+C