已知f(x)=2+log3x,x∈[1/81,9]求函数y=[f(x)]^2+f(x^2)的最大值和最小值

问题描述:

已知f(x)=2+log3x,x∈[1/81,9]求函数y=[f(x)]^2+f(x^2)的最大值和最小值

∵f(x)=2+log3x
∴y=log32x+6log3x+6
又∵1/81≤x≤9
∴log31/81≤log3x≤log39,即-4≤log3x≤2
若令log3x=t,则问题转化为求函数
g(t)=t2+6t+6,-4≤t≤2的最值.
∵g(t)=t2+6t+6,=(t+3)2-3
∴当-4≤t≤2
∴g(t)max=g(2)=22,g(t)min=g(-3)=-3
所以所求函数的最大值是22,最小值是-3.


对数有意义,x>0
x,x²均在定义域上,1/81≤x≤9
1/81≤x²≤9 x>0 1/9≤x≤3
综上,得1/9≤x≤3
底数3>1,对数值随真数增大而递增
[2+log3(1/9)]²+[2+log3(1/81)]=(2-2)²+(2-4)=-2
[2+log3(3)]²+[2+log3(9)]=(2+1)²+(2+2)=13
-2≤y≤13
ymax=13;ymin=-2

提示:本题容易犯的错误就是直接拿x的定义域套,没有考虑x的取值范围实际上要比定义域小。

设:log(3)[x]=t则:f(x²)=2+log(3)[x²]中,x²∈[1/81,9],即:函数y=[f(x)]²+f(x²)的定义域是:x∈[1/9,3]此时有:y=(t+2)²+2+2t=(t+3)²-3,其中t∈[-2,1]结合二次函数y=t...