求z=3xy-x^3-y*^3的极值
问题描述:
求z=3xy-x^3-y*^3的极值
答
z'(x)=3y-3x^2、z'(y)=3x-3y^2
z'(xx)=-6x、z'(xy)=3、z'(yy)=-6y
令z'(x)=3y-3x^2=0、z'(y)=3x-3y^2=0,则x=0、y=0或x=1、y=1
驻点为:(0,0)和(1,1).
若(0,0),则A=0、B=3、C=0,B^2-AC=9>0,所以(0,0)不是极值点.
若(1,1),则A=-6、B=3、C=-6,B^2-AC=9-12=-3