求微分方程的通解:Y'+Y*cosX=e-sinX的通解

问题描述:

求微分方程的通解:Y'+Y*cosX=e-sinX的通解

一般情况下:
y'+p(x)y=q(x)
那么其解的公式为:
y=e^[-∫p(x)dx]{∫q(x)*e^[∫p(x)dx]dx+C}
此题中
p(x)=cosx,q(x)=e^(-sinx)
代入公式得
y=e^[-∫cosxdx]{∫e^(-sinx)*e^[∫cosxdx]dx+C}
=e^[-sinx]{∫e^(-sinx)*e^sinxdx+C}
=e^(-sinx)(x+C)